Deciphering the Precision of Stereo IKONOS Canopy Height Models for US Forests with G-LiHT Airborne LiDAR

نویسندگان

  • Christopher S. R. Neigh
  • Jeffrey G. Masek
  • Paul Bourget
  • Bruce D. Cook
  • Chengquan Huang
  • Khaldoun Rishmawi
  • Feng Zhao
چکیده

Few studies have evaluated the precision of IKONOS stereo data for measuring forest canopy height. The high cost of airborne light detection and ranging (LiDAR) data collection for large area studies and the present lack of a spaceborne instrument lead to the need to explore other low cost options. The US Government currently has access to a large archive of commercial high-resolution imagery, which could be quite valuable to forest structure studies. At 1 m resolution, we here compared canopy height models (CHMs) and height data derived from Goddard’s airborne LiDAR Hyper-spectral and Thermal Imager (G-LiHT) with three types of IKONOS stereo derived digital surface models (DSMs) that estimate CHMs by subtracting National Elevation Data (NED) digital terrain models (DTMs). We found the following in three different forested regions of the US after excluding heterogeneous and disturbed forest samples: (1) G-LiHT DTMs were highly correlated with NED DTMs with R 2 > 0.98 and root mean square errors (RMSEs) < 2.96 m; (2) when using one visually identifiable ground control point (GCP) from NED, G-LiHT DSMs and IKONOS DSMs had R 2 > 0.84 and RMSEs of 2.7 to 4.1 m; and (3) one GCP CHMs for two study sites had R 2 > 0.7 and RMSEs of 2.6 to 3 m where data were collected less than four years apart. Our results suggest that IKONOS stereo data are a useful LiDAR alternative where high-quality DTMs are available. OPEN ACCESS Remote Sens. 2014, 6 1763

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantifying Dynamics in Tropical Peat Swamp Forest Biomass with Multi-Temporal LiDAR Datasets

Tropical peat swamp forests in Indonesia store huge amounts of carbon and are responsible for enormous carbon emissions every year due to forest degradation and deforestation. These forest areas are in the focus of REDD+ (reducing emissions from deforestation, forest degradation, and the role of conservation, sustainable management of forests and enhancement of forest carbon stocks) projects, w...

متن کامل

PREDICTING FOREST HEIGHT FROM IKONOS, LANDSAT AND LiDAR IMAGERY

This paper compares and contrasts predictions of forest height in Sitka spruce (Picea sitchensis) plantations based on mediumresolution Landsat ETM+, high-resolution IKONOS satellite imagery and airborne Light Detection And Ranging (LiDAR) data. The relationship between field-measured height and LiDAR height is linear and highly significant (R 0.98) and so LiDAR height measurements were used to...

متن کامل

A Comparison of Forest Biophysical Parameters Assessed with Lidar Data on Three Platforms: Ground, Airborne, and Satellite

7 Lidar remote sensing from three platforms – ground, airborne, and spaceborne – has 8 the capability to acquire direct three-dimensional measurements of the forest canopy that 9 are useful for estimating a variety of forest inventory parameters, including tree height, 10 volume, and biomass, and also for deriving useful information for characterizing wildlife 11 habitat or forest fuels. 12 The...

متن کامل

Airborne lidar-based estimates of tropical forest structure in complex terrain: opportunities and trade-offs for REDD+

BACKGROUND Carbon stocks and fluxes in tropical forests remain large sources of uncertainty in the global carbon budget. Airborne lidar remote sensing is a powerful tool for estimating aboveground biomass, provided that lidar measurements penetrate dense forest vegetation to generate accurate estimates of surface topography and canopy heights. Tropical forest areas with complex topography prese...

متن کامل

End-to-End Simulation for a Forest-Dedicated Full-Waveform Lidar Onboard a Satellite Initialized from Airborne Ultraviolet Lidar Experiments

In order to study forests at the global scale, a detailed link budget for a lidar system onboard satellite is presented. It is based on an original approach coupling airborne lidar observations and an end-to-end simulator. The simulator is initialized by airborne lidar measurements performed over temperate and tropical forests on the French territory, representing a wide range of forests ecosys...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2014